报告题目: Proof of a conjecture on the total positivity of amazing matrices
摘要: Let n and b be positive integers. Define the amazing matrix \P=\left[P(i,j)\right]_{i,j=0}^{n-1}to be an n\times n matrix with entries
P(i,j)=\frac{1}{b^n}\sum_{r\ge0}(-1)^r\binom{n+1}{r}\binom{n-1-i+(j+1-r)b}{n}. Diaconis and Fulman conjectured that the amazing matrix is totally positive. We give an affirmative answer to this conjecture.
报告人简介:
毛建玺2021年毕业于大连理工大学,主要研究方向是计数组合学。在 Advance in Applied Mathematics, Discrete Mathematics,Linear Algebra and its Applications 等期刊发表学术论文6篇。
报告时间:2021年10月28号下午16:10--16:50
报告地点:腾讯会议708704754