报告题目:Some results for the self-adjoint Schrodinger operators on the half-line: I. stability of direct and inverse scattering problems; II. transmission eigenvalue problems
主 讲 人:徐小川(南京信息工程大学)
报告时间:10月28日下午3:00-4:00
报告地点:腾讯会议 ID:614 309 902
主办单位:金沙集团wwW3354CC
摘要:In this report, we introduce the some new results for the Schrodinger operator on the half line. In the Part I, we introduce the stability of direct and inverse scattering problems. For the direct problem, we give the estimates for the difference of the reflection coefficients in terms of the differences of the corresponding potentials and the parameters in the boundary conditions; for the inverse problem, we give the estimates for the difference of the potentials in terms of the difference of the corresponding scattering data. In the Part II, we introduce the transmission eigenvalue problem with the Robin boundary condition. For the direct problem, we give the density and the asymptotics of the transmission eigenvalues; for the inverse problem, we introduce some uniqueness theorems for recovering the potential from the transmission eigenvalues.
徐小川,南京信息工程大学硕士生导师,美国数学会《Mathematical Reviews》和德国《数学文摘》(Zentralblatt MATH) 评论员,主持国家自然科学基金青年项目,主要研究数学物理中一些重要的微分--积分方程、算子谱等边值问题、逆谱(特征值)及逆散射等反问题,2020年获得江苏省优秀博士学位论文和江苏省工业与应用数学学会学术年会优秀论文奖,在《Inverse Problems》、《Journal of Differential Equations》、《Letters in Mathematical Physics》、《Journal of Geometry and Physics》等SCI期刊发表学术论文20余篇。