报告题目:Compatibility of generalized Eulerian polynomials
报告人:杨立波教授(南开大学教授、博士生导师)
摘要:In the study of the real-rootedness of the independence polynomials of clawfree graphs, Chudnovsky and Seymour introduced the method of compatible polynomials, which turned out to be a very powerful tool for the study of real-rootedness. In this talk, I will talk about recent progress of some conjectures on the real-rootedness of various Eulerian polynomials. Special emphasis will be given to Brenti's type D Eulerian polynomials and Dilks-Petersen-Stembridge's type D affine Eulerian polynomials. The last part of the talk will provide an alternative approach to the real-rootedness of Eulerian polynomials via the Hermite--Biehler theorem.
报告时间:2018年6月8日(周五)上午 10:00-11:00
报告地点:金沙集团wwW3354CC三楼专家接待室
报告人简介:杨立波,国家自然科学基金委优秀青年科学基金项目资助者,教育部新世纪优秀人才;现任南开大学组合数学中心副主任,于1999年获得南开大学理学博士学位。主要从事代数组合学方面的研究,在对称函数理论和单峰型理论方面做出多项重要成果,现已在Trans.Amer. Math. Soc., J. Combin. Theory Ser. A, Adv. in Appl. Math., J. Alge. Combin.等权威数学杂志上发表论文20余篇。主持完成国家自然科学基金多项,参与完成973项目子课题和国家自然科学基金重点项目各1项。