【6月17日】多复变与复几何系列报告

发布时间:2023-06-07文章来源:董显晶 浏览次数:

报告一


报告题目: A Le Potier-type Isomorphism Theorem for Holomorphic Vector Bundles with Storngly Nakano Semi-positive Singular Hermitian Metrics

报告时间:2023年6月17日上午9:30-10:30

报告地点:数学楼122

报告摘要: We will present a Le Potier-type isomorphism theorem for holomorphic vector bundles with storngly Nakano semi-positive singular hermitian metrics. This is a joint work with Yaxiong Liu, Hui Yang and Xiangyu Zhou.

报告人简介:刘卓,博士,毕业于中国科学院大学,师从周向宇院士,现在北京雁栖湖应用数学研究院做博士后研究。研究方向为多复变与复几何,在L2延拓理论、全纯向量丛的正性等方面做出了出色的科研成果。


报告二


报告题目: Optimal L^2 Extensions of Openness Type and Related Topics

报告时间:2023年6月17日上午10:40-11:40

报告地点:数学楼122

报告摘要: In this talk, I will present several optimal L^2 extension theorems of openness type on weakly pseudoconvex Kähler manifolds, which generalize a couple of known results. I will also present some applications to related topics, such as characterizations of Griffiths positivity, the product property for minimal L^2 extensions and the equality part of Suita's conjecture. This talk is mainly based on the joint works with Prof. Xiangyu Zhou.

报告人简介:徐旺,博士,毕业于中国科学院大学,师从周向宇院士,现在北京大学做博士后研究,研究方向为多复变与复几何,对L2延拓理论及相关问题有深入的研究,并在该领域取得了高水平的科研业绩。


报告三


报告题目: Strong Openness of Multiplier Submodule Sheaves Associated to Nakano Semi-positive Singular Hermitian Metrics

报告时间:2023年6月17日下午14:00-15:00

报告地点:数学楼122

报告摘要: Let E be a holomorphic vector bundle endowed with a Nakano semi-positive singular hermitian metric h. Then the multiplier submodule sheaf associated to (E,h) satisfies strong openness, which means that if for any holomorphic section u with |u|^2_h is integrable locally, then there exists p>2 such that |u|^p_h is integrable locally. This is a joint work with Zhuo Liu and Xiangyu Zhou.

报告人简介:杨辉,博士,毕业于中国科学院大学,师从周向宇院士,现在北京大学做博士后研究,研究方向为多复变与复几何,在L2延拓理论方面,尤其是对乘子子模层的强开性问题研究取得了前沿的研究成果。




关闭 打印责任编辑:孔祥立

友情链接