报告(一):Riemann Hypothesis & Uniqueness
报告人:扈培础 教授(山东大学)
报告时间:2022年12月21日 9:00-10:00
报告地点:腾讯会议 ID:151-266-979,会议密码:202212
主办单位:金沙集团wwW3354CC
报告摘要:To prove the Riemann hypothesis, we now only need to prove that ζ(s) = η(s), from which the uniqueness problem arises. Note
that the function η is a meromorphic function that satisfies the following im portant properties:
(i) η and ζ satisfy the same functional equation;
(ii) the zero set of η is a subset of the zero set of ζ counting multiplicities, i.e., Z(η) ⊆ Z(ζ) with counting multiplicities.
Thus, we naturally ask the following uniqueness problem:
Let f be a meromorphic function in the complex plane such that f and ζ satisfy the same functional equation and Z(f) ⊆ Z(ζ) (counting multiplicities). Under what conditions are f and ζ identically equal?
报告(二):Value distribution theory and Diophantine approximation
报告人:扈培础 教授(山东大学)
报告时间:2022年12月21日 10:10-11:10
报告地点:腾讯会议 ID:151-266-979,会议密码:202212
主办单位:金沙集团wwW3354CC
报告摘要:In this talk, we will introduce some problems and results between Diophantine approximation and value distribution theory, say, Mason’s theorem and abc-conjecture; generalized abc-conjecture and its analogue; Hall’s conjecture and Davenport’s inequality; generalized Hall’s conjecture and its analogue; Borel theorem and generalized Fermat conjecture; Nevanlinna’s second main theorem and Roth’s theorem; Cartan’s second main theorem and Schmidt’s subspace theorem; Shiffman-Ru’s second main theorem and Hu-Yang’s subspace theorem; conjectures of Griffiths and Lang and Vojta’s conjecture; Picard’s theorem and Mordell-Faltings’ theorem; theorems of Kobayashi and Brody and Lang’s conjecture; Bloch-Green-Griffiths’ conjecture and Bombieri-Lang’s conjecture.
报告人简介:扈培础,男,1961年生,教授、博士生导师。1996年获香港科技大学博士学位,1998年博士后出站时破格受聘为山东大学教授,1999年被聘为博士生导师。山东省、中国、美国等数学会会员。分析应用和计算国际学会(ISAAC)终身会员,印度数学杂志JAA编委,p-Adic Numbers,Ultrametric Analysis,and Applications编委,Journal of Analysis and Applications编委,《山东大学学报(理学版)》编委,美国数学会《Math. Reviews》评论员,欧洲数学会《Zbl.Math.》评论员。
在复分析、动力系统、数论等若干基础数学领域发表了90余篇的学术论文,其中SCI论文40余篇。出版英文专著5部,教材1部。先后荣获山东省科技进步奖二等奖、分析应用和计算国际学会(简称ISAAC)数学研究杰出成就奖。扈培础及其合作者在Kluwer学术出版社出版的两部专著中系统的总结了复域和非阿基米德域上的全纯映射值分布理论,其中包括许多他们的最新研究成果,例如建立了多复变亚纯函数唯一性象集理论并提出了几个引起W.Cherry、C.C.Yang等人关注的猜想;证明了ABC猜想在值分布论中对应物;提出了值分布论中Griffiths和Lang的猜想在非阿基米德全纯曲线的对应物;证明了映入一般型(或拟典则)投影簇全纯曲线退化的Green-Griffiths猜想。扈培础和杨重骏提出了广义ABC猜想、广义Hall猜想和一般的Fermat猜想并证明了在函数论中对应物;提出了Schmidt子空间定理在齐次多项式形式的猜想并在近期用P.Corvaja和U.Zannier的方
法给出一个证明。