报告题目:The (e)-positivity of two kinds of claw-free graphs
报告摘要:This talk continues our work on Stanley and Stembridge's 3+1 conjecture - the chromatic symmetric function of every claw-free interval graph is e-positive. We focus on two kinds of claw-free graphs: the line graphs of tadpoles, and the cycle-chord graphs which consist of a cycle and a quadrileteral that share a common edge. We use Gebhard and Sagan's tool of noncommutative symmetric functions to show the (e)-positivity of these graphs, which implies the classic e-positivity. With the bivariate generating functions of the chromatic symmetric functions of these graphs in hand, we are looking for a analytic proof for the e-positivity.
个人简介:王国亮,北京理工大学博士生导师,研究方向是代数组合学。2010年毕业于南开大学组合数学中心;2012年北京大学博士后出站,获中国博士后基金和国家青年基金;2014年以色列海法大学博士后出站,入职北京理工大学;2018年访问MIT一年;主持国家面上基金等;与人合作在《中国科学》等发表SCI论文30余篇;近期研究兴趣是Stanley和Stembridge的3+1猜想。
报告时间:2022.5.6上午9:30-10:30
腾讯会议:413 242 583