报告人:何济位教授
报告题目:Pre-resolutions of noncommutative isolated singularities
摘要:We introduce the notion of right pre-resolutions (quasi-resolutions) for noncommutative isolated singularities, which is a weaker version of quasi-resolutions introduced by Qin-Wang-Zhang. We prove that right quasi-resolutions for a noetherian bounded below and locally finite graded algebra with right injective dimension 2 are always Morita equivalent. When we restrict to a noncommutative quadric hypersurface A, we prove that if A is a noncommutative isolated singularity, then it always admits a right pre-resolution. Typical examples of noncommutative isolated singularity are twisted Segre products of Artin-Schelter regular algebras. We provide a method to verify whether a noncommutative quadric hypersurface is an isolated singularity.
报告时间:2022.4.1上午9:00-10:00 报告地点:腾讯会议:577-740-583
何济位简介: 杭州师范大学数学学院教授,2004年毕业于浙江大学数学系,获博士学位。2004年9月至2012年02月先后在复旦大学数学学院和比利时安特卫普大学从事博士后研究工作。浙江省“151人才(第三层次)”,省高校优秀青年教师,省高校中青年学科带头人。主持国家自然科学基金面上项目2项,青年基金1项,省部级基金4项。主要研究领域为非交换代数,在Trans AMS、J Noncommut Geom、Math Z、Israel J Math、J Algebra、中国科学等国内外期刊发表学术论文四十余篇。