报告题目:Mean Field LQ Games with a Finite Number of Agents
报告人:王炳昌 教授
时 间:2021年 12月5号19:50-20:30
地 点: 腾讯会议 834 293 093
摘 要:This work is concerned with a new class of mean-field games which involve a finite
number of agents. Necessary and sufficient conditions are obtained for the existence of the decentralized open-loop Nash equilibrium in terms of non-standard forward-backward stochastic differential equations (FBSDEs). By solving the FBSDEs, we design a set of decentralized strategies by virtue of two differential Riccati equations. Instead of the asymptotic-Nash equilibrium in classical mean-field games, the set of decentralized strategies is shown to be a Nash equilibrium.
报告人简介: 王炳昌,山东大学教授,国家优秀青年基金获得者,IEEE Senior Member。
目前担任中国自动化学会青年工作委员会委员、区块链专委会委员、控制理论专委会随机学
组委员。发表学术论文60余篇,包括IEEE TAC、Automatica和SIAM J. Control and
Optimization论文10余篇(其中长文8篇)。主要研究方向:随机控制与分布式计算、平均场
博弈、机器学习等。