报告题目: Toeplitz operators on random Hardy spaces
报 告 人:朱森 教授(吉林大学)
时 间: 2021年6月1号(星期二) 下午2:30-3:10
地 点: 腾讯会议(会议号:411 974 687)
报告摘要: We initiate the study of a random counterpart of Toeplitz operators on the classical Hardy space $H^2$. Using a sequence $\{X_n: n=0,\pm1,\pm2,\cdots\}$ of i.i.d., positive random variables with law $\mu$, we introduce random Hilbert spaces $L^2_\mu$ and $H^2_\mu$, which are random counterparts of classical $L^2$ and $H^2$ over the unit circle. Toeplitz operators on $H^2_\mu$ are compressions of multiplication operators on $L^2_\mu$ to $H^2_\mu$. We shall discuss some results concerning the spectral theory of Toeplitz operators on $H^2_\mu$.
报告人简介:朱森,吉林大学数学学院教授,博士生导师。主持国家自然科学基金青年、面上等项目。近年来主要从事线性算子的复对称性、随机理论等方面的研究,在 J. Funct. Anal., J. London Math. Soc., Math. Ann., Trans. AMS 等杂志发表系列论文。