报告题目: The k-colored double Eulerian polynomial
报 告 人:马俊 (上海交通大学)
时 间:2021年5月13号 上午 9:00-10:00
地 点:腾讯会议851754215
报告人简介:
马俊,2006年从上海交通大学金沙集团wwW3354CC博士毕业,后2006年至2009年,在台北“中央研究院”数学所从事过为期三年的博士后研究工作,2010年到上海交通大学工作,主要研究组合设计与编码、代数组合、计数组合学及其应用等方面的问题,主持完成国家自然科学基金面上项目一项,研究成果发表在J. Combine. Theory Ser. A, Adv. Appl. Math., SIAM Discrete Math., Designs, Codes and Cryptography, Journal of Graph Theory等国际数学期刊。
报告内容:
The double Eulerian polynomial is the generating polynomial of descents and inverse descents of permutations on the symmetric group and also is the joint distribution of ascents and rows of inversion tables. It also has the very beautiful refined gamma-positivity.In this talk, we will introduce the k-colored double Eulerian polynomial, which is a generalization of the double Eulerian polynomial. We will discuss combinatorial interpretations of this polynomial in terms of k-colored permutations and k-inversion sequences. We will show the refined gamma-positivity of the polynomial. And then, we introduce the generalized $k$-colored double Eulerian polynomial, its combinatorial interpretation and its refined gamma expansions.