1. 报告题目:Mild well-posedness of differential equations on the real
line in Banach spaces
报告人:步尚全教授(清华大学数学系)
报告摘要:In this talk, we will give the recent results on the mild well-posedness of differential equations with values in complex Banach spaces. The main tools are operator-valued Fourier multipliers on the corresponding vector-valued fucntion spaces.
报告时间:2020年5月29日上午8:30-9:15
报告地点:腾讯会议 会议 ID:869 774 993
2. 报告题目:Generalizations of Wigner’s Theorem
报告人:吴文明教授(重庆师范大学金沙集团wwW3354CC)
报告摘要:这是一个综述报告。在报告中,我首先介绍Wigner定理的意义和历史,然后重点介绍Wigner定理的各种推广,以及我们团队取得的相关成果。最后列出一些仍有待解决的问题。
报告时间:2020年5月29日上午9:20-10:00
报告地点:腾讯会议 会议 ID:869 774 993
3. 报告题目:Sum preserving maps on $L^p$
报告人:李磊副教授(南开大学金沙集团wwW3354CC)
报告摘要: Suppose that $1<p<\infty$ and $S(L^p)_+$ is the positive elements of norm one. Assume that $V$ is a sum preserving map between $S(L^p)_+$, that is, $\|V(x)+V(y)\|=\|x+y\|$. In this talk, I will give the representation of such $V$. This is a joint work with Yunbai Dong and Jingjing Hao.
报告时间:2020年5月29日上午10:15-10:55
报告地点:腾讯会议 会议 ID:869 774 993
4. 报告题目:Realization of rigid C*-bicategories as bimodules over type II_1 von Neumann algebras
报告人:袁巍副研究员(中国科学院数学与系统科学研究院)
报告摘要: It is known that every rigid C*-tensor category can be realized as bimodules over II_1 factors. In this talk, I will provide a machinery to bootstrap realization of tensor categories to rigid C*-bicategories and show that every rigid C*-bicategories can be realized as bimodules over type II_1 von Neumann algebras. In particular, every rigid multi-tensor C*-category can be realized as bimodules over a finite direct sum of hyperfinite II_1 factors.
报告时间:2020年5月29日上午11:00-11:40
报告地点:腾讯会议 会议 ID:869 774 993