报告一:Hochschild cohomology and its computations
摘要:We give an introduction to Hochschild cohomology. After defining this cohomology theory, I will introduce two methods to compute it, the first uses weak self-homotopies, and the second is algebraic Morse theory. I will apply these two methods to compute Hochschild cohomology of twisted group algebras, then I will talk about the deformation quantization of noncommutative Poisson structures via PBW deformations and Drinfeld Hecke algebras.
报告二:Relative singularity categories and relative defect categories
摘要:We introduced the relative defect category of an abelian category $\mathfrack{A} $ with respect to a full additive subcategory $\mathfrack{C} $ , generalizing Gorenstein defect categories of P. A. Bergh, D. Jorgensen and S. Oppermann. Under mild conditions, we show that the relative defect category of $\mathfrack{A} $ with respect to $\mathfrack{C} $ is triangle equivalent to the relative singularity category of $\mathfrack{A} $ with respect to the Gorenstein category $\mathfrack{G} (\mathfrack{C} )$. This generalizes a recent result proved by Fan Kong and Pu Zhang and independently by Yan-Hong. Bao, Xian-Neng Du and Zhi-Bin Zhao for Gorenstein defect categories, and hopefully also a result by Wen-Jing Chen, Zhong-Kui Liu and Xiao-Yan Yang for Ding-Chen defect categories. This talk is based on a joint work with Hanyang You.
报告人:周国栋 华东师范大学 教授 博士生导师
时间:2018年12月25日 15:30 - 16:20
地点:金沙集团wwW3354CC三楼专家接待室
报告人简介:
周国栋,博士,华东师范大学副教授,博士毕业于法国亚棉大学,师从著名代数学家Alexander Zimmermann教授。主要研究领域为代数表示论与同调代数,主持过的项目有国家自然科学基金青年基金、上海市浦江人才计划项目、教育部博士点新教师基金与国家自然科学基金面上基金,其学术成果发表在 J. London Math. Soc., Math. Z., Trans. Amer. Math. Soc.,J.Algebra、J.Pure Appl. Alg.等期刊上。主要学术兼职有美国数学评论员与欧洲数学会评论员