报告人:黄曼子 湖南师范大学教授
报告地点:东方儒家花园第一会议室
报告一
报告题目: GROMOV HYPERBOLICITY AND INNER UNIFORMITY
报告摘要: In this talk, a characterization for inner uniformity of bounded domains in Euclidean n-space, n ≥ 2, in terms of the Gromov hyperbolicity is established, as well as the quasisymmetry of the natural mappings between Gromov boundaries and inner metric boundaries of these domains. In particular,our results show that the answer to a related question, raised by Bonk, Heinonen and Koskela in 2001, is affirmative.
报告时间:5月19日11:00-12:00
报告二
报告题目:RELATIVE QUASIMÖBIUS MAPS AND\psi-NATURAL DOMAINS
IN BANACH SPACES
报告摘要:Suppose that E is a real Banach space with dimension at least 2. Themain aim of this paper is to show that a \psi -natural domain G in E is quasimobius rel the
boundary invariant. This result give a positive answer to some relative problem raised by Vasala in 1992. As an application on this result we also give a positive answer to somerelative problem raised by Vasala in 1999.
报告时间:5月19日15:00-16:00
报告三
报告题目:Gehring-Hayman inequality and ball separation property
报告摘要:In this talk, we discuss the equivalence of Gehring-Hayman inequality and ball separation in R^n, and give an affirmative to the related open problems raised by Balogh and Buckley in 2003.
报告时间:5月19日16:00-17:00
报告人简介: 黄曼子,女,博士,教授,硕士生导师。湖南省青年骨干教师,德国《数学文摘》评论员。主要从事函数论研究,针对本领域内被大家所关注的某些公开问题开展研究,已解决拟共形映射的创始人Vaisala、Heinonen等提出的相关公开问题和猜测7个,部分研究实现了从有限维到无限维空间的突破,取得了一些开创性的结果;为拟共形映射在复解析动力系统、 Teich muller空间等的研究提供了重要工具。部分结果发表或即将发表在《Math.Ann.》、《Adv. in Math.》 《Israel J.Math.》、《Math.Scand》等国际著名刊物上。先后主持国家自然科学基金项目2项。2018年获得国家优青。